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Abstract—Speculative execution attacks exploit malicious spec-
ulation to leak sensitive data via microarchitectural covert
channels. Speculative Taint Tracking (STT) is a state-of-the-
art hardware mechanism that blocks such threats by tainting
data flowing from speculative loads, untainting data once all its
dependencies are not speculative, and delaying instructions that
create covert channels until their inputs are untainted. However,
STT’s hardware feasibility remains unclear due to a lack of
detailed hardware cost analysis.

This paper presents the first in-depth hardware cost analysis
of STT and identifies two key challenges: (1) the logic delay of
taint propagation, which grows with rename width, and (2) area
overhead from instruction delaying, which requires expensive
CAM-style logic to enforce speculation safety.

To address these, we propose a new microarchitecture for STT,
called 4STT. uSTT is based on two new mechanisms. First, the
Age Matrix is a shallow taint propagation circuit that removes
85% of the logic delay overhead of prior STT designs, while
only adding 36% more area at the default rename width of 8.
Second, the impede micro-op implements instruction delaying in
a fashion that increases STT’s performance overhead by only 5
percentage points (from 16% to 21%), while replacing bespoke
STT hardware with existing RAW dependency tracking. Together,
these contributions reduce STT’s hardware complexity and cost
in the context of high-end wide-issue processor designs.

Index Terms—Secure Speculation, Microarchitecture, Taint
Tracking, Speculative Execution Attacks

I. INTRODUCTION

Speculative execution attacks [16], [19]-[23] exploit
control-flow (e.g., branch prediction [41]]) and data-flow (e.g.,
value prediction [25]) speculation in modern processors to
leak sensitive data from a victim’s program memory via
microarchitectural covert channels. These attacks intentionally
trigger mispredictions, causing the processor to speculatively
execute transient instructions (instructions that will eventually
be squashed) that can transmit data through covert channels.
For example, consider Spectre V1, given by if (i < N)
{ arr2[arrl[i]] }. Here, an attacker transmits (leaks)
the contents of an arbitrary memory location (out of bounds
of arrl[i]) through a cache-based covert channel (given
by the lookup into arr2) by causing the branch predictor to
mispredict and take the branch even when 1 < N resolves to
false architecturally.

This paper considers the state-of-the-art hardware-based
defense against speculative execution attacks called STT [45]].
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STT propagates taint to prevent speculative data flows from
reaching covert channels. For example, it would delay the load
into arr2. As soon as the branch resolves, STT dynamically
untaints all flows that begin with a load in the shadow of the
resolved branch. That is, it will allow the load into arr2 to
proceed as soon as the branch resolves.

STT is a compelling implementation candidate to mitigate
speculative execution attacks for a number of reasons. For
example, it is software-transparent, relatively low performance
overhead and only requires hardware changes to the processor
core (as opposed to requiring changes to the ISA or processor
core + memory hierarchy [4], [42]).

Yet, challenges to adoption remain. The original STT paper
lacks a detailed hardware cost analysis. We find this overhead
to be substantial. In particular, STT’s taint propagation logic
is implemented in the rename stage and significantly increases
the logic delay (to linear in the rename width). Simultaneously,
STT’s instruction delay/untainting logic requires extensive
changes (in the form of state, broadcast buses and CAM-style
logic) to the processor backend.

A. This Paper

This paper ameliorates these issues by proposing uSTT: a
microarchitecture design for STT that features a shallow taint
propagation circuit and a low-complexity hardware instruction
delay mechanism. In the following, we refer to the original
STT design as OG-STT.

Reducing Taint Propagation Delay. To support fast untaint-
ing, OG-STT must compute each renamed operand’s youngest
root of taint (yrot), which tracks the youngest load that register
depends on. This results in a rename stage with circuit depth
linear in the rename width: the yrot of the output register of
an instruction is the younger of the yrots of its inputs and its
inputs could come from the same rename group.

We address this by decoupling yrot computation into two
parallel steps: (1) identifying the source yrots each instruction
depends on, and (2) computing the younger-than relationships
among all source yrots using what we call an Age Matrix.
These two steps are later merged to assign each instruction
the youngest yrot among its dependencies. We implement
our design in Verilog and synthesize it using the open-source
Skywater 130nm technology process [1]]. At the default rename
width of 8, our Age Matrix-based circuit removes 85% of the



logic delay overhead of OG-STT, with only a 36% increase
in area.

Area of Instruction Delaying/Untainting. STT requires de-
laying instructions that can create covert channels, until their
yrots are older than the current visibility point (VP), which
marks the youngest non-speculative load. In OG-STT, this is
implemented by associating a yrot field with each reservation
station entry and performing expensive CAM-style VP com-
parisons. This approach incurs substantial area overhead.

We propose an alternative approach that reuses existing
processor hardware. The idea is to delay instructions using a
new micro-op, called the impede micro-op. In this design, yrots
are stored using the physical register fields in the reservation
station, and standard data dependency logic is reused to delay
instruction issue until the yrot crosses the VP. We evaluate
this scheme using the Gem5 simulator on SPEC CPU2017
benchmarks and find that it only marginally increases STT’s
performance overhead (from 16% to 21%), while significantly
reducing hardware complexity.

Contributions. We make the following contributions:

1) We present the first in-depth analysis of STT and identify
two key challenges that hinder its adoption in high-
performance superscalar processors: critical path delay
in taint propagation logic, and complexity/area overhead
in instruction delaying/untainting.

2) We propose a shallow taint propagation circuit, called
the Age Matrix scheme, that reduces logic depth.

3) We propose a low-complexity untaint propagation mech-
anism, called the impede micro-op scheme, which
achieves instruction delaying/untainting while leverag-
ing existing RAW dependency tracking.

4) We synthesize our Age Matrix-based taint propagation
circuit. Our design removes 85% of the logic delay
overhead of OG-STT with only a 36% increase in area
at a rename width of 8.

5) We evaluate the impede micro-op scheme on SPEC
CPU2017 benchmarks [2]. Our design only marginally
increases STT’s performance overhead (from 16% to
21%), while significantly reducing hardware complexity.

The evaluation infrastructure and code used in this
paper have been open-sourced and are available at
https://github.com/FPSG-UIUC/uSTT.

II. THREAT MODEL & SCOPE

We wish to protect the confidentiality of a victim pro-
gram’s data through speculative execution. We adopt the same
attacker model used by prior hardware defenses [44]], [45]:
(i) The attacker is allowed to monitor covert channels from
anywhere that a thread can run in the processor (co-located
with the victim on the same physical core, on a different
physical core, etc.). (ii) The attacker is allowed to monitor any
covert channel available to it (e.g., through the caches [26],
[40], TLBs [13]], [35], on-chip interconnects [12], [28]], [37],
arithmetic ports [5], [7], and BTBs [24]], [43[], [47]). (iii) The

attacker is allowed to induce arbitrary mis-speculation in the
victim program.

III. BACKGROUND
A. Speculative Execution Attacks & Defenses

Speculative execution attacks exploit control- (e.g., branch
prediction [41]) or data-flow (e.g., value prediction [25])
speculation in modern processors to leak sensitive data via
microarchitectural covert channels. These attacks manipulate
the processor into misprediction, causing it to speculatively
execute transient instructions (instructions that will eventually
be squashed) that can transmit data via covert channels.
Researchers have uncovered numerous speculative execution
attacks exploiting various forms of control-flow [21]]-[23]] and
data-flow speculation [16], [19], [20].

Following most prior defenses [44], [45], our goal is to
protect speculatively-accessed data (i.e., read from memory
by a speculative instruction) [3], [6], [9], [14], [33], [36].
This is sufficient to block universal read gadgets demonstrated
in [15], [22]], [27], [38], [39] and is of critical importance
for the security of general-purpose programs and isolation
mechanisms, e.g., kernel code and sandboxes. A recent line
of work extends this to protect non-speculatively-accessed
data [10], [L1], [29], [46]. This is primarily useful for hard-
ening cryptographic code, and it incurs more overhead. We
consider it out of scope.

B. Speculative Taint Tracking

Speculative Taint Tracking (STT) [45] is a framework
designed to prevent the leakage of speculatively-accessed data
through microarchitectural covert channels. To achieve this,
STT taints speculatively-accessed data, propagates the taint
through younger instructions, and delays the execution of those
instructions if they are capable of creating a covert channel.

Types of Covert Channels. STT classifies covert channels
into two classes: explicit and implicit channels. An explicit
channel is created by an instruction whose execution time de-
pends on its inputs. Such an instruction is called a transmitter
(or transmit instruction); examples include loads/stores and
timing-variable arithmetic. An implicit channel is created by
an instruction whose inputs influence how or whether sub-
sequent instructions execute (e.g., control-flow instructions).
Implicit channels can leak information at prediction or at
its resolution time. For example, a branch instruction can
leak information at prediction time (if the predictor contains
secrets) or its resolution time (if the branch operand is secret).
Finally, STT further distinguishes between explicit and implicit
branches. An explicit branch is a control-flow instruction,
while an implicit branch is a conceptual branch that occurs due
to hardware mechanisms that change how instructions execute.
For example, store-to-load forwarding can be viewed as an
implicit branch that checks for an address alias to determine
if a load will access the cache.

Taint Propagation and Untainting. STT tracks taint through
speculative dataflows using the following taint policy: the input


https://github.com/FPSG-UIUC/uSTT

register of an instruction is tainted if and only if the speculative
dataflow into that register is a function of the value returned by
an unsafe load. A load is unsafe if it returns a secret according
to the threat model, and it can dynamically transition to safe
later. For example, in the Spectre model [45]], a load is unsafe
if and only if there are older unresolved branches. The index in
the reorder buffer (ROB) corresponding to the youngest safe
load is called the visibility point (VP). At a high level, the
above is implemented by propagating taint through instructions
as they are renamed (i.e., if an instruction’s operand is tainted,
its output is tainted), and propagating untaint as older loads
become safe.

Protection Policy. Given the above, STT blocks all covert
channels by applying the following protection policy: (1)
Explicit Channels are blocked by delaying the execution of
transmit instructions until their operands are untainted. (2)
Prediction-based Implicit Channels are eliminated by prevent-
ing tainted data from affecting the state of any predictor struc-
ture. (3) Resolution-based Implicit Channels are eliminated by
delaying the effects of branch resolution until the (explicit or
implicit) branch’s operand becomes untainted.

Youngest Root of Taint. Implementing the untaint opera-
tion efficiently is non-trivial as it requires one to re-trace
the dataflow from the output of a load through all of its
dependents. To mitigate this, STT introduces the youngest root
of taint (yrot), which tracks the youngest load that a register
depends on. The yrot of an instruction is computed as the
younger of the yrots of its source operands. The protection
policy (above) then treats data as tainted if its yrot is younger
than the visibility point.

Putting Everything Together. From the perspective of taint
(or yrot) tracking, STT operates as follows:

« Initial tainting: The yrot of the destination register of a
load is initialized to the ROB index of that load.

o Taint propagation: The yrot of an instruction (and its
destination register) is set to the younger of its source
registers’ yrots. The exception is if the instruction is
a load, which does not propagate a yrot but instead
generates a new one using its own ROB index.

o Instruction delaying/Untainting: The execution of a
transmit instruction and resolution of a branch is delayed
until its yrot becomes older than the VP. Note that branch
resolution comes after branch execution. Delaying branch
execution is a secure alternative but incurs more overhead.

IV. MOTIVATION: HARDWARE COMPLEXITY OF STT

The original STT paper [45] does not analyze the potential
impact on logic delay or the area overhead introduced by
STT’s required hardware changes. This paper revisits the hard-
ware design implied by the original STT proposal—referred
to here as OG-STT—and identifies two key limitations that
render OG-STT challenging for adoption in high-performance
superscalar processors.

Rename Circuit. The rename stage, a critical stage in out-
of-order execution, maps architectural registers to physical
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Fig. 1: Read-after-write (RAW) and write-after-write (WAW)
dependency checks in rename logic with a rename width
W = 3. To perform the RAW (or WAW) check, each source
(or destination) register is compared against the destination
registers of preceding instructions within the same rename
group. The comparison results are passed to a priority encoder
to identify the most recent match.

registers. In superscalar processors, multiple instructions are
renamed per cycle—referred to as a rename group—with the
number of instructions defining the rename width W. The
register alias table (RAT) tracks this mapping. Each cycle,
free physical registers are allocated to destination operands,
while source operands undergo a read-after-write (RAW) de-
pendency check to determine if their physical ID comes from
either the same group or the RAT. Additionally, a write-after-
write (WAW) dependency check resolves multiple writes to the
same architectural register, updating the RAT with the most
recent assignmentE] See Figure

Clock Period Increase due to Taint Propagation. OG-STT
extends the processor’s rename logic to support taint (yrot)
propagation. In parallel with the RAT, it introduces a yrot table
to track the yrots of architectural registers. Each instruction’s
yrot is computed as the younger yrot of its source operands. If
the instruction has a destination register, that register inherits
the instruction’s yrot—except for the load instruction, whose
destination yrot is initialized to the instruction’s ROB index.
While this logic works for single-instruction rename per
cycle, superscalar processors introduce intra-group dependen-
cies—source yrots may come from the yrot table or earlier
instructions in the same rename group. A natural solution is
to use a multiplexer to select among all possible source yrots,
with selection signals derived from the RAW dependency
check. See Figure[2] Since yrots within a rename group are re-
solved sequentially, the logic delay of yrot propagation grows
linearly with the rename width. Consequently, the processor’s
clock frequency may degrade as the rename width increases,
making OG-STT impractical for wide-rename designs.

Area Overhead due to Instruction Delaying. In OG-STT,
transmit instructions are delayed in their reservation station
(RS), if their yrots are younger than the VP. We call an
RS that can store transmitters a risky RS. OG-STT augments
each risky RS entry with a new field, YRoT, which stores
the instruction’s yrot. Extra CAM-style comparison logic is
introduced to support yrot-aware instruction wake-up. Specifi-

'WAW check also identifies the previously assigned physical register, which
may be stored in the ROB to support register mapping rollback on squash.
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Fig. 2: Yrot propagation circuit of OG-STT with a rename
width W = 3. The critical path grows linearly with W.

cally, the VP is broadcast to all risky RS entries and compared
against the stored yrots to determine eligibility for wake-
up. Consequently, both the number of YRoT fields and the
number of younger-than comparators scale linearly with the
number of risky RS entries. This not only incurs a substantial
area overhead due to the added comparison logic and YRoT
fields, but also requires significant wiring complexity for
broadcasting VP updates across the entire RS structure.

V. puSTT: MICROARCHITECTURE DESIGN FOR STT

We now present a new microarchitecture design for STT,
uSTT, that addresses both limitations discussed in Section
This design introduces a shallow taint propagation circuit, the
Age Matrix, which uses only a single level of younger-than
comparators (Section [V-A). As a result, the propagation delay
scales more slowly with increasing rename width, making it
suitable for wide superscalar designs.

To delay transmit instructions without introducing dedi-
cated VP comparison logic, we introduce a new micro-op,
impede, which delays instruction issue via RAW dependencies
(Section [V-B). Since RAW handling is already supported
by existing CAM logic in the reservation station (RS), this
mechanism requires no significant modification to the RS.

A. Shallow Taint Propagation Circuit

As discussed in Section [IV] the high critical path latency
in the taint propagation circuit stems from the fact that the
yrot of a later instruction cannot be computed until the
yrots of its preceding instructions in the same rename group
are resolved. To eliminate this intra-group dependency, we
decouple the computation of yrots across instructions renamed
in the same cycle. Our approach breaks yrot propagation into
two parallel steps that are later merged. First, we build a
yrot dependency graph to determine which source yrots each
instruction depends on—either from the yrot table (for source
registers) or from new yrots generated by loads. In parallel, the
Age Matrix determines the younger-than relationships among
all source yrots in the rename group. Each instruction then
selects the youngest of its dependent yrots as its own. For
clarity, we first describe this mechanism assuming no load
instructions are present, and later extend it to handle loads.

Yrot Dependency Graph. Recall from Section that the
RAW dependency check in the rename stage identifies which

Example:

1:add r2, r1, r0
2: add r3, r2, r2
3: add r4, r3, r3
4: add r5, r3, r3
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Fig. 3: Dependency graphs between instructions within a

rename group.

instruction produces a value consumed by a later instruction.
As illustrated in Figure [3] instruction 2 produces r3, which is
subsequently used by instructions 3 and 4. These producer-
consumer relationships form a direct dependency graph, with
edges from instruction 2 to 3 and 4. Unlike the rename logic,
yrot tracking must trace back to the original source register
that has no dependency within the same rename group. We
refer to such registers as free registers.

To identify the yrot sources for each instruction, we compute
the transitive closure of the direct dependency graph. This
reveals all instructions that an instruction’s yrot may depend
on. Connectivity is checked recursively, as shown in Algo-
rithm [I] Two instructions are considered connected if they
are either directly linked or transitively connected through
intermediate instructions. Note that every instruction connects
to itself, which is omitted in Algorithm [I] and Figure 3
The recursion terminates when two instructions are adjacent
(no intermediate instructions) and returns their connectivity
according to the direct dependency graph. The hardware depth
of this transitive closure computation is logarithmic in the
rename width, because at each layer, the maximum distance
covered doubles (e.g., 1-hop, 2-hop, 4-hop, etc.).

We then build the yrot dependency graph by extending
transitive closure edges to source registers and pruning edges
from non-free registers, whose yrots are fully derived from
others. As shown in Figure[3] the yrots of all four instructions
depend on two free registers: rl and r0.

Age Matrix. The Age Matrix takes a vector of 2W source
yrots (two source registers per instruction in a rename group of
width W) and computes pairwise younger-than relationships.
We denote two source yrots of the ¢-th instruction as yrots;_1
and yrote; (i € [1,W]). Figure illustrates the structure
of the Age Matrix, which has a shape of 2WW x 2W. Each
row and column index corresponds to a source yrot, and each
element in the matrix encodes the younger-than relationship
between the yrots at those indices. For example, the orange
cell AgeMatriz[5,1] in Figure {4a| is set to 1 if the first
source operand of the third instruction (yrots) is younger than
the first source operand of the first instruction (yrot;). Since
the matrix is antisymmetric—the lower triangular part is the
logical inverse (flip) of the upper triangular—only the upper
triangular portion requires actual younger-than comparators,



Algorithm 1: Connectivity between two instructions.

Input 1, 7: Instruction indices

dgraph[W][W]: Direct dependency graph
Output: 1 (connected) / 0 (disconnected)

1 Function CheckCon (i, j, dgraph):

dis < j —1;

if dis == 1 then
| return dgraphl[j][i;

A W N

else
for k < 1 to dis— 1 do
bridgel < CheckCon(i,i + k,dgraph);
bridge2 < CheckCon(i + k, j, dgraph);
inter_conlk — 1] < bridgel A bridge2;

N=IN-CREEN B

10 return dgraph[j][i| V (\/,, inter_con[k]);

which amounts to W (2W — 1) comparator instances.

Yrot Selection Logic. The Age Matrix can be further pro-
cessed to identify the youngest yrot for each instruction. Take
instruction 2 as an example, illustrated in Figure @b This
instruction may depend on the yrot sources of the first two
instructions—namely yrot; through yrot,—forming the blue
square region in the matrix. Suppose yrots is the youngest
among these. The column corresponding to yrots (column
index 2) will be filled with all Os, since no other yrots are
younger than it. At the same time, the row corresponding to
yrote will have all 1s, except at the diagonal entry (which
compares it with itself). In contrast, the columns associated
with other yrots will have at least one bit-1, indicating the
presence of a younger yrot. By applying an OR-reduction to
each column, only the column corresponding to the youngest
yrot will reduce to 0, which can then be used to select the
appropriate yrot from the source yrots vector.

Not all source yrots are relevant to a given instruction. For
example, if yrot, is not a dependency of instruction 2, it
should be excluded from the selection process. To mask out
irrelevant yrots, we apply two masks for each element at row
¢ and column j. This is summarized in Equation (I).

MaskOutli][j] = ~DepGraph|2][j] V
(AgeMatriz[i][j] A DepGraph[2][i]) (1)

First, ~DepGraph|2][j] forces the columns of irrelevant yrots
to all 1s, ensuring they are not selected (i.e., their OR-reduction
will be 1). Second, DepGraph[2][i] zeros out the rows of
irrelevant yrots, ensuring other candidates are not mistakenly
blocked.

Adding Loads. The previous procedure assumes no load
instructions, but loads change the yrot propagation behavior
because they generate new yrots and terminate the propagation
path—the destination yrot is independent of source operands.
To prevent yrot propagation through loads, we adjust the direct
dependency graph by removing all edges originating from load
instructions. As shown in Figure [5] when instruction 2 is a

1 Source Yrot Idx yrot, <= Youngest

0 0O x| x
9 Mask out
0 ) 1|of1]1 :
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0 8 x|0fo]x yrot
5 0 0
0 ] X 2
-
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(TSI e cotarn
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Fig. 4: (a) Age matrix structure and semantics. We denote
two source yrots of the i-th instruction in the rename group as
yrotg;—1 and yrote; (1 € [1, W]). (b) Yrot selection example
for instruction 2, combining the Age Matrix with the yrot
dependency graph (DepGraph).

3:addr4,r3,r3 : : : :

4: add r5, r3, r3 Adjusted Direct Dependency Graph
Fig. 5: Adjust the dependency graph when handling load
instructions in the rename stage.

1if yrotg > yrot, else 0

Example:
1: add r2, r1, r0
2:load r3,r2,r2

load, its outgoing edges are removed, making instructions 3
and 4 have free registers. However, their source yrots should
now come from instruction 2’s ROB index, not the yrot table.
To correctly retrieve source yrots, instruction ¢ in the decode
group requires two ¢ : 1 multiplexers, to select between the
yrot table entry or the ROB index of the corresponding load
instruction in the rename group.

Younger-than Comparator. The original STT paper uses a
simple max function to select the younger yrot between two
source yrots. However, it does not explain how the max is
implemented in the context of the circular ROB, where indices
wrap around. As shown in Figure [6] (left), if two yrots are on
the same side of the ROB head, the larger index is younger. In
contrast, if two yrots lie on opposite sides of the head—i.e.,
across the wrap-around—the smaller index is younger. Prior
work [31] addressed this ambiguity with three greater-than
operations: two to determine relative positions to the head and
one for index comparison.

Since the number of younger-than comparators in the Age
Matrix grows quadratically with rename width and lies on
the critical path, reducing comparator complexity is the key
to minimize delay and area overhead. As shown in Figure [6]
(right), we improve on this by unrolling the ROB once into
two virtual regions. We append one extra bit, called the
wrap_bit, to the top of ROB tail. This bit toggles each time
the tail crosses a virtual region boundary. Yrots generated by
load instructions inherit this wrap_bit from the ROB tail
when assigned. Because valid yrots always lie between the
ROB head and tail, they span at most two virtual regions.
Thus, if two yrots are in the same region, they are also on the
same side of the ROB head, and the one with the larger index



Same or Different Side of Head
(Head 2 yrot1) A (Head 2 yrot2)

Same or Different Virtual Region
MSB(yrot1) == MSB(yrot2)

Case 1 (Same virtual Region):

ROB ROB yrot2 > yrotl
|- Head [ yrot2 yrotl yrot2
i i
| yrotl
ROB
[ yrot2 [~ yrot1 T T
yrotl yrot2

Case 1 (Same Side): Case 2 (Different Side):
yrot2 > yrotl

Case 2 (Different virtual Region):

yrot2 < yrotl wrap_bit ? MSB(yrot2) : MSB(yrot1)

I
I
I
|
|
|
l- Head |
|
|
|
|
I
I
|

Prior Work This Work
Fig. 6: Construction of the younger-than comparator. Prior

works require three greater-than operations, whereas our de-
sign requires only one.

is younger. If they fall in different regions, the yrot in the
wrap-around region—i.e., the one sharing the wrap_bit of
the ROB tail—is considered younger. With this encoding, the
younger-than comparator requires only a single greater-than
operation, reducing both logic complexity and delay.

B. Instruction Delaying with Impede Micro-ops

As discussed in Section[[V] extending the reservation station
(RS) to support VP-yrot comparisons incurs substantial area
overhead. To avoid this, we introduce a new micro-op called
impede. The impede micro-op delays the issue of a transmitter
by acting as a producer of the transmitter’s input operand. It
also takes the transmitter’s yrot as an input operand and stalls
in the RS until this yrot crosses the VP and is broadcast via
the common data bus (CDB).

Speculation Epoch. In OG-STT, each load assigns its des-
tination yrot as its ROB index. This design results in many
distinct inflight yrots. In the impede micro-ops design, each
distinct yrot must eventually be broadcast over the common
data bus (CDB), which can lead to significant communication
overhead. To mitigate this, we observe that loads between two
speculation initiators (e.g., branches) become non-speculative
together. We propose grouping these loads together and as-
signing them a common yrot. We refer to this shared yrot as
a speculation epoch, and it is represented by the ROB index
of the corresponding speculation initiator.

Impede Micro-op. Transmit instructions, denoted as ry <—
transmitter(rx), are decomposed into two micro-ops. The first
is the impede micro-op, which takes two input operands, as
shown in Equation (2). One operand is the original trans-
mitter input, rx, and the other is the yrot of the transmitter,
yrot(transmitter). Importantly, yrots share the same value
space as physical register IDs and are stored in the same
field within the RS entry. To distinguish between a yrot and a
physical register ID, the field must be extended by at least one
bit (or more, if yrots require greater bit width). Functionally,
the impede micro-op simply forwards its input rx to a new
destination rx’.

rx’' < impede(yrot(transmitter), rx) 2)
ry < transmitter(rx’) (3)

The second micro-op replicates the behavior of the original
transmit instruction and uses rx’ (produced by the impede
micro-op) as its input.

While the two micro-ops per transmitter are installed in the
RS, a VP pump broadcasts speculation epochs, as they cross
the VP, on the CDB. When this broadcasted epoch matches the
yrot operand of an impede micro-op, the micro-op becomes
ready to issue (assuming its other operand is also ready), and
subsequently wakes up the corresponding transmitter micro-
op (after being issued). In this design, the yrot is treated as a
source operand of the impede micro-op. As a result, standard
wake-up and writeback logic—already used for handling RAW
dependencies—can be leveraged to delay the impede micro-
op, and consequently the transmitter, until the yrot crosses the
VP and is broadcast on the CDB.

Implicit Channel Treatment. A straightforward way to apply
impede micro-ops to protect branches is to treat branches as
transmit instructions and to decompose each into two micro-
ops, following the strategy used for other transmitters. How-
ever, this approach introduces two drawbacks: it unnecessarily
delays branch execution, increases the number of impedes
inserted into the instruction stream, and adds an extra cycle
of issue delay (assuming the impede micro-op takes one cycle
to execute and writeback).

We propose delaying branch resolution until it becomes the
oldest unresolved speculation initiator. At that point, it is safe
to resolve the branch because no older speculative loads exist,
ensuring that the input is untainted. This is similar to, but more
conservative than, the original STT design, which resolves
branches as soon as their inputs are untainted.

This approach offers two key benefits. First, only mispre-
dicted branches incur a delay. We note that most branches
are predicted correctly due to modern high-accuracy branch
predictors. Second, delaying speculative branch resolution
ensures that no speculative instructions remain in flight after a
squash. As a result, the yrot table can be safely reset without
requiring checkpoints for rollback, reducing area overhead in
the rename stage. While we explained this idea in the context
of explicit branches (control-flow instructions), it can also be
applied to other implicit channels.

Deadlock Treatment. The above design suffers from a poten-
tial deadlock scenario, where dispatched transmitters miss their
corresponding yrot broadcast on the CDB and are permanently
stalled. For example, a transmit instruction may be assigned
a yrot that has already been broadcast before the instruction
is dispatched. Although this yrot is no longer speculative,
the broadcast is not replayed, and missing it can leave the
associated impede micro-op permanently stalled—potentially
leading to deadlock. To prevent this, yrots must be explicitly
invalidated once they are broadcast. When a yrot is sent on
the CDB, any matching entries in the yrot table are marked as
untainted (i.e., invalid). In addition, dispatched impede micro-
ops must compare their yrot operand against the current VP.
If the yrot has already crossed the VP, the yrot operand is
marked as ready, allowing the impede micro-op to proceed
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without waiting for a broadcast.

VI. EVALUATION

We evaluate our Age Matrix-based taint propagation circuit
and the impede micro-op instruction delaying scheme. Our
evaluation uses parameters in Table [, which are derived from
prior reverse engineering efforts targeting Apple’s Firestorm
microarchitecture [18]], [30], a representative large-window,
high-performance design that poses significant challenges for
supporting STT.

A. Taint Propagation Delay and Area

Experimental Setup. We implement the standalone rename-
stage taint propagation circuit in Verilog and synthesize it
using Cadence VLSI tools with the open-source Skywater
130nm technology process [1]]. We compare three designs: the
baseline rename circuit (RENAME), the OG-STT design (OG-
STT), and our Age Matrix-based design (AGEMATRIX). Each
taint propagation circuit includes both taint-specific logic and
baseline rename logic.

Results. We start from the default parameter settings and
vary the rename width from 2 to 10. Figure [/| shows the
logic delay and area consumption for the three designs. As
the results show, AGEMATRIX scales significantly better than
OG-STT in terms of delay. As the rename width increases,
the delay gap between OG-STT and both AGEMATRIX and
RENAME widens considerably. On average across all tested
rename widths, the latency of the AGEMATRIX is 1.69x that of
the RENAME, while OG-STT incurs a 3.86x latency overhead.
In terms of area consumption, the AGEMATRIX incurs 25%
more area than OG-STT and 142% more than the RENAME.
At the default rename width of 8, AGEMATRIX removes 85%
latency overhead of OG-STT with a 36% area increase.

We further investigate the impact of yrot bit width on both
delay and area. Specifically, we vary the yrot width from 9
to 11 bits, corresponding to ROB sizes of 256 to 1024, with
rename width fixed at 8. The results are shown as red error bars
in Figure [/| As the results show, yrot width has a negligible
impact on critical path delay and only a modest effect on area.

B. Performance Overhead of Instruction Delaying

Simulation Setup. We use the Gem5 simulator [8]] to evaluate
the performance impact of introducing impede micro-ops on
an AArch64 architecture. We run SPEC CPU2017 bench-
marks [2] with the reference input set and apply SimPoint
analysis [34]. The program execution is divided into chunks
of 100 M instructions, and up to 30 representative SimPoints
per application are selected using a clustering algorithm. Each
SimPoint is preceded by a 10 M instructions warm-up phase.
Final performance results for each application are computed
as the weighted sum across all selected SimPoints.

TABLE I: Simulated Architecture Parameters

HW Components Parameters

Architecture 1 core at 3.2GHz, AArch64 ISA

Core 8 fetch/decode/rename/dispatch/issue/writeback/commit,
130/60 LQ/SQ entries, 330 ROB entries,
380 integer physical registers, 128 flags physical registers,
120 instruction queue entries, TAGE branch predictor

L1 I-Cache 192KB, 6-way, 2-cycle latency

L1 D-Cache 128KB, 8-way, 2-cycle latency

L2 Cache 12MB, 12-way, 20-cycle latency

DRAM 20ns latency after L2

Configurations. In our Gem5 implementation, we adopt the
Spectre model [45], where a load instruction is considered
unsafe until there are no older unresolved branches. For leak-
age channels, we assume that load and store instructions can
create explicit channelsE] Meanwhile, branch instructions are
assumed to create implicit channels. We evaluate four different
designs: (1) DELAYACC [32] delays the execution of unsafe
loads. (2) DELAYEXEC [31] (which models a naive taint-
based scheme) delays the execution of tainted loads/stores and
the resolution of tainted branches until there is no unresolved
branch older than them. (3) OG-STT [45] delays the execution
of loads/stores and the resolution of branches until their yrots
cross the VP. (4) Our proposal IMPEDEMEM-DBR applies
impede micro-ops to loads/stores. A branch is protected by
delaying its resolution until it is the oldest unresolved branch.
Finally, UNSAFE is the insecure baseline.

Main Performance Results. Figure [8| compares the execution
time of four configurations: OG-STT, IMPEDEMEM-DBR
(our proposal), DELAYEXEC, and DELAYACC. Their perfor-
mance overheads relative to the insecure baseline (UNSAFE)
on average are 16%, 21%, 32%, and 60%, respectively. These
results highlight the importance of adopting STT-style taint
propagation and untainting mechanisms. OG-STT outper-
forms the naive tainting in DELAYEXEC by 16 percentage
points, and the non-taint-based defense DELAYACC by 44 per-
centage points. Our proposal, IMPEDEMEM-DBR, achieves
similar benefits to OG-STT with only 5 additional percentage
points overhead—while requiring significantly fewer hardware
modifications.

Optimizations over the Impede Scheme. We evaluate the
performance impact of two key optimizations added to the

2 Although a store does not commit its data to memory until retirement, it
initiates address translation during execution, thereby transmitting its address
operand through the page walk side channel [38].
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LAYEXEC, DELAYACC and our proposal IMPEDEMEM-DBR.

impede micro-op scheme: the use of speculation epochs and
delayed branch resolution. Without speculation epochs, the
performance overhead increases significantly—from 21% to
38%—due to a larger number of yrots consuming CDB
bandwidth, as described in Section The delayed branch
resolution optimization is also notably more effective than
applying impede micro-ops directly to branches. Specifically,
it reduces performance overhead from 32% to 21%.

Sensitivity Study. Finally, we perform a sensitivity study over
three architecture parameters that may contribute to resource
contention introduced by impede micro-ops: writeback width,
integer functional unit count, and instruction queue size We
evaluate the impact of these parameters on performance for
three configurations: UNSAFE, OG-STT, and our proposal.
Table || reports the results. Our proposal is most sensitive to
the writeback width. Reducing the writeback width from 8 to 4
leads to a 16% increase in overhead for our design, compared
to only 3% for UNSAFE and 5% for OG-STT. We remark that
our proposal is primarily applicable to large-window designs,
where the writeback width is typically larger than 4.

TABLE II: Sensitivity Study.
Writeback Width Functional Unit Count Instruction Queue Size
4 6 8 2 4 6 40 80 120
Unsafe 3% 0% 0% 3% 0% 0% 6% 0% 0%
OG-STT 21% 17% 16% 19% 16% 16% 20% 16% 16%
Our proposal 37% 24% 21% 33% 21% 21% 27% 22% 21%

VII. RELATED WORK

This paper presents the first in-depth implementation study
of speculative taint tracking (STT). The most relevant prior
work, Secure-by-Construction [17]], mitigates the logic delay
of taint propagation by offloading it from the rename stage
to the execution stage. A dedicated functional unit is instan-
tiated to compute the yrot of a destination register when its
associated instruction reaches the execution stage. While this
solves logic delay in the rename stage, it does not address the
area overhead of instruction delaying. The reservation station

3Impede micro-ops are executed on integer functional units. Other param-
eters (e.g. physical register file size and ROB size) have similar effect. We
do not put them here to save space.

still requires per-instruction YRoT fields and younger-than
comparators for wake-up logic. Assuming a ROB size of 512
entries, there can be up to 512 in-flight instructions. Each
instruction requires three yrot copies (two for source registers,
one for the destination), leading to a total of 512 x 3 9-bit yrot
registers. We estimate the area overhead for just yrot state
bits to be 4.3 x 10°um? (not including comparator logic or
extended CDB), which exceeds the area of the entire 8-wide
rename-stage Age Matrix circuit (whose area is 3.5 x 10° um?).

VIII. CONCLUSION

This paper proposes a novel microarchitectural design for
Speculative Taint Tracking (STT), uSTT, that addresses two
key limitations of the original design: (1) non-scalable logic
delay of the taint propagation circuit, and (2) area overhead as-
sociated with the instruction delaying mechanism. Specifically,
the proposed Age Matrix enables scalable taint propagation,
while the impede micro-ops provide an instruction delaying
mechanism that requires minimal hardware modification. To-
gether, these innovations offer a practical path toward realizing
STT in modern superscalar processors.
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